
11/10/10
INTERFACE NECTAR ETHERNET

version 1.2

1. Introduction
This note describes the functionalities of the new NECTAR electronics board.
This board is composed of 16 independent electronics channels.
Each channel is composed of one amplifier, a SAM channel, an ADC channel and

a FIFO buffer.
The FIFO buffers are embedded in a Altera Cyclone III FPGA.

2. Software programming

2.1. Register programming
The interface use the following IP Address: 192.168.1.18 and different ports:
port 0x0400, 0x0410, 0x420 and 0x430
The internal register interface is used to define different user internal parameters.
This internal register bank is different from the internal core configuration register.
Do not confuse the two register bank, internal register and internal core configura-

tion register.

2.1.1. Internal register interface
A user 256-register bank is defined.

Figure 1.1
NECTAR BOARD VIP2 1

11/10/10
In order to access the previous register bank, we must send the following UDP
frames word1 and word2:

word 1 (32-bit): [31:24]=Addr
[23:16]=Command
[15:08]=0xFF
[07:00]=0x00

Command 0x04 Read register
0x08 Write register

and in the case of a write command
word2 (32-bit): data to be written in the register at Addr.
For example, the EPROM programming used some internal registers (Voir “ § 2.5.

page 5 “).

2.1.2. GEDEK core programming
The internal core configuration register is describe below and cannot be accessed

directly from Ethernet.
Address Functionality Access Reset Value
0x00 FPGA Board MAC Address (32 LSB) R/W Generic Dependent
0x01 FPGA Board IP Address R/W Generic Dependent
0x02 Destination MAC Address (32 LSB) R/W 0x66322E2A
0x03 Destination MAC Address (16 MSB) R/W 0x00000019
0x04 Destination IP Address R/W 0xC0A801CF
0x05 Reserved N/A N/A
0x06 Reserved N/A N/A
0x07 Reserved N/A N/A
0x08 Reserved N/A N/A
0x09 Reserved N/A N/A
0x0A Virtual Uart Link UDP Port Number (When Available) R/W 0x00000017
0x0B Reserved N/A N/A
0x0C Reserved N/A N/A
0x0D Reserved N/A N/A
0x0E Reserved N/A N/A
0x0F Reserved N/A N/A

For example the destination IP Address: 0xC0A801CF must be interpreted after hex
to dec conversion as C0.A8.01.CF:

C0 -192
A8 -168
01 -01
CF -207

2.2. PORTS Definition
Different sources of data can be transmitted on UDP. A different Port number is

used for each source of data:

DAQPort x"0400" for data acquisition
SLCPort x"0410" for the board slow control
RegPort x"0420" for the internal GEDEK Register bank
NectarPort x"0430" for the NeCTAr slow control chip
NECTAR BOARD VIP2 2

11/10/10
2.3. Reference design programming
This part of the programming is the user part and gives access to the data.
7 blocks are used to configure the slow control of the board:
All the following words are 32-bit.

CntrlSlc is used to program the threshold for the pixel (Thrshld1 8-bit), the thresh-
old for the pixel sum (Thrshld2 8-bit) and the common mode voltage VMC (12-bit).

AAAAAAAA
00007E0C
[0000Thrshld1]
[0000Thrshld2]
[0000VMC]
AAAAAAAA
--
CntrlNECTARReg is used to program the internal SAM registers CDR1, CDR2

and TestFCR
AAAAAAAA
00007E3E
[0000CDR1]
[0000CDR2]
[000000TestFCR]
[0000CDR6]
[0000CDR7]
AAAAAAAA
--
CNTRLNECTARDac is used to program the 32 internal SAM DACs
AAAAAAAA
00007E3A
0000MemNum [3:0]
DACL0
DACL1
DACL2
DACL3
DACL4
DACL5
DACL6
DACL7
DACL8
DACL9
DACLA
DACLB
DACLC
DACLD
DACLE
DACLF
AAAAAAAA
--
CNTRLNECTARNd is used to define the delay pointer Nd
AAAAAAAA
00007E3C
0000YNd Y=NECTAR number (F=broadcast) Nd[9:0]
AAAAAAAA
--
NECTAR BOARD VIP2 3

11/10/10
CntrlReadBack
AAAAAAAA
00007E40
00000Y00 Y=1 [DAC], Y=2 [Nd], Y=3 [NECTAR CHIP REG]
AAAAAAAA
--
CntrlIntReg is used to program and read back the internal GEDEK core registers.

In case of read back the message does not include data (AD0-AD4)
When the internal registers are read, the data block is the following:

BBBBBBBB
Board MAC Ad.
Board IP Ad.
Dest. MAC Ad. (32 LSB)
Dest. MAC Ad. (16 MSB)
Dest IP Ad.
Status bit 0=host detected
BBBBBBBB

CntrlIntReg Y=1
AAAAAAAA
00007E50
0000000Y Y=1 write the following registers, Y=0 read back
AD0 FPGA Board MAC Address (32 LSB)
AD1 FPGA Board IP Address (32 LSB)
AD2 Destination MAC Address (32 LSB)
AD3 Destination MAC Address (16 MSB)
AD4 Destination IP Address (32 LSB)
AAAAAAAA
--
CntrlIntReg Y=0
AAAAAAAA
00007E50
0000000Y Y=0 read back
AAAAAAAA

--
CNTRLDAQ is used to define the DAQ parameters
AAAAAAAA
00007E30
0000XXXX [Nf][x][Q/Sampls][T0][TOT] [10][1][1][1][1]
AAAAAAAA

The 2 following blocks are used to receive data in either charge mode or sampling
mode.

In order to get a correct IPNum word, it is mandatory to launch at least one time the
CntrlIntReg Y=0 block to actualize the internal registers.

DAQCHARGE
AAAAAAAA
0000EEE0
IPNum
0000Evtcounter (16-bit)
Data block (8 x 32-bit) [Data1][Data2]
AAAAAAAA
NECTAR BOARD VIP2 4

11/10/10
DAQSAMPLE
AAAAAAAA
0000EEE3
IPNum
0000Evtcounter (16-bit)
0000Data block (16 x Nf x 16-bit)
AAAAAAAA

2.4. Utility
The utility ctatest developed under Linux allows communication with the board

SAMNECTAR. This utility is able to read a file command text, transform it into binary and
send on IP address and on the port desired. This utility can be configured either in client
mode (writing on the IP address and port specified) or in server mode (listening on the IP
address and port specified). Online help is available by the command: ./ctatest.

For example: ./ctatest -c 192.168.1.18 -wcta_input_cntrldaq
The utility takes into account that the given data to transferred is formatted 32 bits,

the blocks in the files must not include the 0000 (write AAAA and not 0000AAAA).

2.5. EPROM programming
The design allows to program through ethernet the EPCS FPGA EPROM. This

EPROM is used to store the internal FPGA code necessary to operate.
For this purpose, the internal register addresses are used:

x40 EPCSRdRamRdData
x41 EPCSRdRamRdAddress
x42 EpcsStartAddress
x43 reserved for data writing
x44 EPCSStatus

3. NECTAr serial link
In order to program the NECTAr chip, a dedicated serial link is used between the

local FPGA and the NECTAr chip.

The serializer inside the FPGA is described in VHDL language. The following lines
give the entity of the serializer block.

The communications between the serializer block and the others VHDL blocks are
done by a set of two FIFO embedded in the serializer block.

The structure of a FIFO block is the following:
[Command]
[Data block]

The size of the FIFO is defined by the greater block (DAC block) to read/write. For
one Nectar chip it needs 16x32-bit and for 8 chips the size must be at least 128x32-bit.

So the data structure must be at least 129x32-bit and the FIFO must be 256x32-bit.
When the FIFO has been written with a data block to serialize, the StartWrSerial

signal is generated. In other hand, when the output FIFO holds a complete block from the
serializer the SerOutRdy signal is generated.

The following diagram shows the serializer block and the corresponding VHDL en-
NECTAR BOARD VIP2 5

11/10/10
tity.
NECTAR BOARD VIP2 6

11/10/10
==
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity nectarser is
 port(
clk : in STD_LOGIC; -- 66MHz
 Rst : in STD_LOGIC;
 StartWrSerial : in STD_LOGIC; -- A data block is ready in the fifo
 DataToSer : in STD_LOGIC_VECTOR(31 downto 0);-- Fifo input
 SerFifoWrClk : in STD_LOGIC; -- For internal input fifo
 SerFifoWrEn : in STD_LOGIC; -- Enable for the SerFifoWrClk
 SerFifoRdClk : in STD_LOGIC; -- For internal input fifo
 SerFifoRdEn : in STD_LOGIC; -- Enable for the SerFifoRdClk
 SCDOut : in STD_LOGIC; -- Serial from Nectar
 SerClkOut : out STD_LOGIC; -- Clock for Nectar serialiser
 SCin : out STD_LOGIC; -- Serial to Nectar
 SerInRdy : out STD_LOGIC; -- Serializer readyfor data, fifo empty
 SerOutRdy : out STD_LOGIC; -- Serializer ready, all data ready for read
 DataFromSer : out STD_LOGIC_VECTOR(31 downto 0); -- Fifo output
 SCEnW : out STD_LOGIC_VECTOR(7 downto 0) -- Nectar serial enable
);
end nectarser;

architecture nectarser of nectarser is
begin

end nectarser;
==
The following timings shows the signals involved with the remaining FPGA logic.

3.1. The Serial FIFO Command Word
The first word written into the internal FPGA FIFO used before a serial transmis-

Clk :::
SerInRdy ----/=======================\---------
SerFifoWrClk :::
SerFifoWrEn ------/====== ===========\-------------
DataToSer ������{�����c_�_���������}�������������
StartWrSerial ---------------------------/=\----------
(to Nectar)

SerFifoRdCLk ::
SerFifoRdEn ------/====== ===========\-------------
DataFromSer ��������))))))))))))))))))))��������������
SerOutRdy -------/=====\-----------------------------------
NECTAR BOARD VIP2 7

11/10/10
sion to the NECTAr chip defines how to interpret the following data block.

4. The Serial Peripheral Interface (SPI)
The SPI is a full-duplex, synchronous serial link.
This implementation is based on the Xilinx CoolRunner Serial Peripheral Interface

Master.The initial VHDL implementation was done for a 8051 microprocessor interface
and has been entirely review and adapted for the Nectar requirements.

Block Type Value
(Hexa)

Comment # DATA words

DAC 0000001X X=not relevant 16x32

Nd 0000002X Y=Chip number
if Y=0xF then broadcast

Yy
y=[7:0]=Nd

Reg 0000003X X=not relevant CDR1
CDR2
FCR
CR6
CR7

000001XX DAC Read Back 128x32

000002XX Nd Read Back 8x8

000003XX Register Read Back 8x5

Tableau 3.1
NECTAR BOARD VIP2 8

11/10/10
4.1. Internal SPI registers
The communication with the SPI are done through 5 internal registers.

Figure 4.1

Register Address
(Hexa)

SPISR 0 Status

SPICR 4 Control

SPISSR 8 Slave Select

SPITR A Transmit Data

SPIRR E Receive Data

Tableau 4.1
NECTAR BOARD VIP2 9

	Interface NECTAR Ethernet
	1. Introduction
	Figure 1.1

	2. Software programming
	2.1. Register programming
	2.1.1. Internal register interface
	2.1.2. GEDEK core programming

	2.2. PORTS Definition
	2.3. Reference design programming
	2.4. Utility
	2.5. EPROM programming

	3. NECTAr serial link
	3.1. The Serial FIFO Command Word
	Tableau 3.1

	4. The Serial Peripheral Interface (SPI)
	Figure 4.1
	4.1. Internal SPI registers
	Tableau 4.1

